L'ESPRESSIONE IN COORDINATE DI PRODOTTO SCALARE E VETTORIALE

Nella figura 1 sono rappresentati, in un sistema di riferimento cartesiano tridimensionale Oxyz, i tre versori \hat{x} , \hat{y} e \hat{z} . Dati i due vettori

$$\vec{a} = a_x \hat{x} + a_y \hat{y} + a_z \hat{z} \quad e \quad \vec{b} = b_x \hat{x} + b_y \hat{y} + b_z \hat{z}, \tag{1}$$

vogliamo calcolare le espressioni esplicite del loro prodotto scalare $c = \vec{a} \cdot \vec{b}$ e del loro prodotto vettoriale $\vec{v} = \vec{a} \times \vec{b}$.

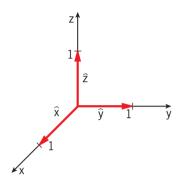


Figura 11 tre versori che indicano la direzione positiva lungo gli assi coordinati di un sistema di riferimento nello spazio.

Il prodotto scalare

Sostituendo nell'operazione di prodotto scalare le espressioni della formula (1) otteniamo

$$\vec{a} \cdot \vec{b} = (a_x \hat{x} + a_y \hat{y} + a_z \hat{z}) \cdot (b_x \hat{x} + b_y \hat{y} + b_z \hat{z}) =$$

$$= (a_x \hat{x}) \cdot (b_x \hat{x}) + (a_x \hat{x}) \cdot (b_y \hat{y}) + (a_x \hat{x}) \cdot (b_z \hat{z}) +$$

$$+ (a_y \hat{y}) \cdot (b_x \hat{x}) + (a_y \hat{y}) \cdot (b_y \hat{y}) + (a_y \hat{y}) \cdot (b_z \hat{z}) +$$

$$+ (a_z \hat{z}) \cdot (b_x \hat{x}) + (a_z \hat{z}) \cdot (b_y \hat{y}) + (a_z \hat{z}) \cdot (b_z \hat{z}) =$$

$$= a_x b_x (\hat{x} \cdot \hat{x}) + (a_x b_y + a_y b_x) (\hat{x} \cdot \hat{y}) + a_y b_y (\hat{y} \cdot \hat{y}) +$$

$$+ (a_x b_z + a_z b_x) (\hat{x} \cdot \hat{z}) + (a_y b_z + a_z b_y) (\hat{y} \cdot \hat{z}) + a_z b_z (\hat{z} \cdot \hat{z}).$$

Nel calcolo precedente abbiamo sfruttato la commutatività del prodotto scalare; così si ha, per esempio, $\widehat{x} \cdot \widehat{y} = \widehat{y} \cdot \widehat{x}$ e relazioni analoghe valgono per gli altri prodotti scalari tra versori differenti. Ma tutti i versori sono perpendicolari tra loro, per cui il prodotto scalare di due versori diversi è nullo:

$$\widehat{x} \cdot \widehat{y} = \widehat{x} \cdot \widehat{y} = \widehat{y} \cdot \widehat{z} = 0.$$
 (2)

Il versore \widehat{x} è parallelo a se stesso, e lo stesso vale per i versori \widehat{y} e \widehat{z} ; quindi si ha

$$\widehat{x} \cdot \widehat{x} = 1 \times 1 = 1, \quad \widehat{y} \cdot \widehat{y} = 1 \times 1 = 1 \quad \text{e} \quad \widehat{z} \cdot \widehat{z} = 1 \times 1 = 1.$$
 (3)

Sostituendo i risultati (2) e (3) nell'espansione di $\vec{a} \cdot \vec{b}$ troviamo

$$\vec{a} \cdot \vec{b} = a_x b_x \times 1 + (a_x b_y + a_y b_x) \times 0 + a_y b_y \times 1 + + (a_x b_z + a_z b_x) \times 0 + (a_y b_z + a_z b_y) \times 0 + a_z b_z \times 1 = = a_x b_x + a_y b_y + a_z b_z,$$

da cui leggiamo che vale

$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z \tag{4}$$

L'espressione (4) è quella che compare nella penultima riga della tabella che si trova nel paragrafo 4 del capitolo «Applicazioni dei principi della dinamica».

Il prodotto vettoriale

Replichiamo ora il calcolo precedente nel caso del prodotto vettoriale e otteniamo:

$$\vec{a} \times \vec{b} = (a_x \hat{x} + a_y \hat{y} + a_z \hat{z}) \times (b_x \hat{x} + b_y \hat{y} + b_z \hat{z}) =$$

$$= (a_x \hat{x}) \times (b_x \hat{x}) + (a_x \hat{x}) \times (b_y \hat{y}) + (a_x \hat{x}) \times (b_z \hat{z}) +$$

$$+ (a_y \hat{y}) \times (b_x \hat{x}) + (a_y \hat{y}) \times (b_y \hat{y}) + (a_y \hat{y}) \times (b_z \hat{z}) +$$

$$+ (a_z \hat{z}) \times (b_x \hat{x}) + (a_z \hat{z}) \times (b_y \hat{y}) + (a_z \hat{z}) \times (b_z \hat{z}) =$$

$$= a_x b_x (\hat{x} \times \hat{x}) + (a_x b_y - a_y b_x) (\hat{x} \times \hat{y}) + a_y b_y (\hat{y} \times \hat{y}) +$$

$$+ (a_x b_z - a_z b_x) (\hat{x} \times \hat{z}) + (a_y b_z - a_z b_y) (\hat{y} \times \hat{z}) + a_z b_z (\hat{z} \times \hat{z}).$$

I segni meno che compaiono nell'ultimo dei passaggi precedenti sono conseguenza della proprietà anticommutativa del prodotto vettoriale, per cui si ha

$$\widehat{y} \times \widehat{x} = -\widehat{x} \times \widehat{y}, \quad \widehat{z} \times \widehat{y} = -\widehat{y} \times \widehat{z} \quad e \quad \widehat{x} \times \widehat{z} = -\widehat{z} \times x.$$
 (5)

Ora possiamo semplificare il calcolo di $\vec{a} \times \vec{b}$ ricordando che il prodotto vettoriale tra due vettori paralleli è uguale a zero e, come caso particolare, lo è anche quello di un vettore con se stesso:

$$\widehat{x} \times \widehat{x} = \widehat{y} \times \widehat{y} = \widehat{z} \times \widehat{z} = 0.$$
 (6)

Inoltre, applicando la regola della mano destra ai versori della figura 1 vediamo che valgono le seguenti uguaglianze:

$$\widehat{x} \times \widehat{y} = \widehat{z}, \quad \widehat{y} \times \widehat{z} = \widehat{x} \quad e \quad \widehat{z} \times \widehat{x} = \widehat{y}.$$
 (7)

Sostituendo i risultati (6) e (7) nell'espansione di $\vec{a} \times \vec{b}$ troviamo

$$\vec{a} \times \vec{b} = a_x b_x \times 0 + (a_x b_y - a_y b_x) \times \hat{z} + a_y b_y \times 0 +$$

$$+ (a_z b_x - a_x b_z) \times \hat{y} + (a_y b_z - a_z b_y) \times \hat{x} + a_z b_z \times 0 =$$

$$= (a_y b_z - a_z b_y) \hat{x} + (a_z b_x - a_x b_z) \hat{y} + (a_x b_y - a_y b_x) \hat{z},$$

da cui si riconosce la relazione

$$\vec{a} \times \vec{b} = (a_y b_z - a_z b_y) \hat{x} + (a_z b_x - a_x b_z) \hat{y} + (a_x b_y - a_y b_x) \hat{z}$$
 (8)

Il risultato ottenuto è in accordo con l'ultima riga della tabella che si trova nel paragrafo 4 del capitolo «Applicazioni dei principi della dinamica».

Il prodotto vettoriale come determinante

Visto che l'espressione (8) non è agevole da ricordare, può essere utile esprimere l'espressione in componenti del prodotto vettoriale come il determinante

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$
 (9)

Sviluppando il determinante (9) rispetto alla prima riga si ottiene l'espressione (8).

ESERCIZI

DOMANDE SUI CONCETTI

- Sono dati i vettori $\vec{a} = 3\hat{x} + 2\hat{y} \hat{z}$ e $\vec{b} = \hat{x} \hat{y} + 4\hat{z}$.
 - ▶ Determina il valore del prodotto scalare $c = \vec{a} \cdot \vec{b}$.
- 2 Un punto materiale compie lo spostamento ret★☆★ tilineo

 $\vec{s} = (0,26 \text{ m})\hat{x} + (0,15 \text{ m})\hat{y} + (0,11 \text{ m})\hat{z}$ mentre su di esso agisce la forza costante

$$\vec{F} = (3.8 \text{ N})\hat{x} - (5.4 \text{ N})\hat{y} + (1.7 \text{ N})\hat{z}$$

- ► Calcola il prodotto scalare tra la forza \vec{F} e lo spostamento \vec{s} . [0,37 N · m]
- Sono dati i vettori $\vec{a} = 2\hat{x} 5\hat{y} 3\hat{z}$ e $\vec{b} = -\hat{x} + 3\hat{y} + \hat{z}$.
 - ightharpoonup Determina il vettore $\vec{v} = \vec{a} \times \vec{b}$.

$$[\vec{v} = 4\widehat{x} + \widehat{y} + \widehat{z}]$$

Rispetto a un punto fissato *P*, un corpo puntiforme occupa la posizione

$$\vec{r} = (2.4 \,\mathrm{m})\hat{x} + (1.7 \,\mathrm{m})\hat{z}$$

mentre su di esso agisce la forza

$$\vec{F} = (7.1 \,\mathrm{N})\hat{x} + (8.8 \,\mathrm{N})\hat{y}.$$

- ▶ Determina il prodotto vettoriale $\overrightarrow{M} = \overrightarrow{r} \times \overrightarrow{F}$. $[\overrightarrow{M} = (-15 \text{ N} \cdot \text{m}) \widehat{x} + (12 \text{ N} \cdot \text{m}) \widehat{y} + (21 \text{ N} \cdot \text{m}) \widehat{z}]$
- 5 Sono dati i tre vettori

3000 dati the vectori

$$\vec{d} = 6,80\hat{x} - 5,30\hat{y} - 8,10\hat{z},$$

$$\vec{e} = 2,50\hat{x} + 4,10\hat{y} + 1,20\hat{z} \text{ e}$$

$$\vec{f} = -3,30\hat{x} + 3,20\hat{y} + 5,10\hat{z}.$$

ightharpoonup Calcola il valore di $c = \vec{d} \cdot (\vec{e} \times \vec{f})$.

[c = 30,6]