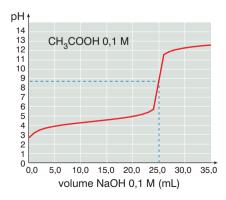
Capitolo 10 ACIDI E BASI

Normalmente per determinare il volume necessario affinché una soluzione acida reagisca in quantità stechiometricamente equivalente con una soluzione basica si ricorre a un indicatore.

Gli indicatori sono acidi deboli o basi deboli a struttura molecolare complessa, talvolta di origine naturale, che hanno la proprietà di cambiare colore quando cedono o acquistano un protone (figura > 1).

HInd
$$(aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + Ind^-(aq)$$

È importante sottolineare che la specie acida HInd ha un colore (per esempio, rosso) mentre la sua base coniugata Ind⁻ ha un colore diverso (per esempio, blu). Dato che l'equilibrio acido-base è influenzato dal pH, la concentrazione di una delle due specie può prevalere nettamente, essere cioè almeno 10 volte maggiore dell'altra: quando ciò accade, la soluzione assume la colorazione della specie prevalente. Per ogni indicatore esiste un intervallo di pH, detto *intervallo di viraggio*, in cui le concentrazioni delle due specie non sono molto differenti e quindi si può osservare una colorazione intermedia.


Nella tabella seguente sono presentati alcuni indicatori acido-base con il rispettivo intervallo di viraggio. Le colorazioni riportate si riferiscono al colore dell'indicatore quando si trova in un ambiente il cui pH è rispettivamente al di sotto o al di sopra dell'intervallo di viraggio.

Nome	Intervallo di viraggio (pH)	Colorazioni (prima dell'intervallo/ dopo l'intervallo
metilarancio	3,1–4,4	rosso/giallo
verde di bromocresolo	3,8–5,4	giallo/blu
rosso di metile	4,8–6,0	rosso/giallo
blu di bromotimolo	6,0-7,6	giallo/blu
tornasole	5,0-8,0	rosso/blu
fenolftaleina	8,0–9,6	incolore/fucsia
timolftaleina	8,3–10,5	incolore/blu

Mescolando opportunamente diversi indicatori si ottiene il cosiddetto *indicatore universale*, cioè un miscuglio che assume gradualmente colorazioni diverse in un intervallo relativamente ampio di pH.

Una titolazione acido-base può essere eseguita anche misurando con un apposito strumento, il piaccametro, il pH della soluzione dopo l'aggiunta di volumi noti di soluzione titolante (figura ▶2).

Nel corso della titolazione il pH aumenta in modo netto soltanto in prossimità del cosiddetto *punto equivalente*, cioè la situazione in cui la quantità di base aggiunta è stechiometricamente uguale a quella dell'acido.

▲ Figura 1 Facendo bollire per trenta minuti circa un po' di cavolo rosso, tagliato a fette e coperto di acqua, si ottiene una soluzione intensamente colorata in blu che funge da indicatore acido-base. Essa assume una colorazione verde in ambiente basico e una colorazione rossa in ambiente acido.

▼ Figura 2 Nella figura sono riportate le curve di titolazione rispettivamente di una soluzione di HCl e di una soluzione di CH₃COOH con la stessa soluzione titolante (NaOH).

Osservando la figura ▶2 è facile notare che il pH al punto equivalente è diverso nei due diversi casi: per l'acido acetico, acido debole, il pH è maggiore di 7.

È proprio lo studio delle curve di titolazione che consente di stabilire qual è l'indicatore acido-base più idoneo: il suo intervallo di viraggio infatti deve essere compreso nel salto del pH che si verifica in prossimità del punto equivalente. È proprio per questo motivo che nella titolazione di un acido debole con una base forte generalmente si utilizza la fenolftaleina.

Per saperne di più

La maggior parte delle piante predilige un terreno con un intervallo più o meno ampio di pH attorno al 7. Ogni specie, tuttavia, possiede un intervallo ottimale di pH: per la patata è 4,8–6,9, per l'erba medica 6,8–8,0. Il pH ottimale del terreno favorisce anche la crescita dei fiori: per esempio, le azalee e i rododendri sono acidofili. Un caso particolare è **l'ortensia**: per avere ortensie rosa e rosse, il terreno dovrà avere un pH oltre 7,5; per avere ortensie blu il pH dovrà essere 4,5. Ciò è dovuto al fatto che l'ambiente del terreno sposta l'equilibrio acido-base di indicatori naturali che si trovano nella pianta. Il pH di un terreno si può in parte modificare utilizzando sali che danno idrolisi acida o basica.