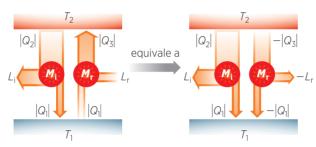
DIMOSTRAZIONE DEL TEOREMA DI CARNOT

Dimostriamo il teorema di Carnot, cioè che

il rendimento η di una macchina termica M qualsiasi è sempre minore o uguale al rendimento $\eta_{\rm rev}$ di una macchina $M_{\rm rev}$ reversibile che operi fra le stesse temperature, dove il segno di uguaglianza vale solo se la macchina M è reversibile.


Cioè:

$$\eta \le \eta_{\text{rev}} \tag{6.4}$$

Supponiamo per assurdo che l'enunciato non sia vero e che esista una macchina M_{imp} il cui rendimento η_{i} sia superiore al rendimento η_{r} di una macchina reversibile, cioè

$$\eta_i > \eta_r$$

Dato che M_r è reversibile, possiamo farle compiere un ciclo inverso, cioè con tutti i segni scambiati, tra le stesse temperature T_1 e T_2 tra le quali opera M_i (figura 1).

Figura 1. I due schemi sono equivalenti, per cui abbiamo $|Q_2| = L_1 + |Q_1|$ e $-|Q_3| = -L_r - |Q_1|$.

*La macchina M*_i: assorbe $|Q_2|$ dalla sorgente calda, compie lavoro L_i e cede $|Q_1|$ alla sorgente fredda.

La macchina M_r : assorbe $|Q_1|$ dalla sorgente fredda, su essa viene compiuto lavoro L_r e cede calore $|Q_3|$; il che equivale a dire che assorbe $-|Q_3|$ dalla sorgente calda, compie lavoro $-L_r$ e cede calore $-|Q_1|$ alla sorgente fredda.

La trasformazione completa, data dall'accoppiamento dei due cicli, è pertanto quella di una macchina $M_i + M_r$ che (figura 2):

- assorbe una quantità di calore $|Q_2| |Q_3|$ da una sorgente calda;
- compie lavoro pari a $L_i L_r = |Q_2| |Q_3|$ per la formula (6.2);
- cede una quantità di calore $|Q_1| |Q_1|$, cioè nulla, alla sorgente fredda.

Il risultato netto è pertanto la conversione completa in lavoro di una quantità di calore $|Q_2|-|Q_3|$ prelevata da un'unica sorgente calda come unico risultato, infatti nulla è cambiato nella sorgente fredda. Tale conclusione è impossibile per il secondo principio della termodinamica, per cui una macchina non può avere un rendimento maggiore di una macchina reversibile. Se tale macchina è reversibile, inoltre, l'apparato $M_{imp}+M_{rev}$ può essere rovesciato e si può ripetere il ragionamento, il che dimostra l'enunciato del teorema di Carnot.

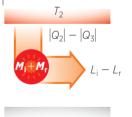


Figura 2. L'accoppiamento delle due macchine porta a un risultato in contrasto con l'enunciato di Kelvin del secondo principio della termodinamica.