

è l'insieme dei valori che una grandezza assume in diversi punti dello spazio

FENOMENI ELETTRICI

FISICA DELLE FORZE

le cariche elettriche interagiscono a distanza esercitando forze reciproche l'una sull'altra

FISICA DEI CAMPI

ogni carica è causa di una modifica delle proprietà dello spazio, che si manifesta come forza elettrica sulle altre cariche

FORZA ELETTRICA

$$F = qE$$

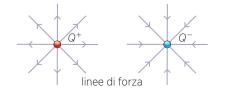
carica di prova q

positiva e sufficientemente piccola da non modificare il sistema

CAMPO ELETTRICO

$$E = \frac{F}{q}$$

si misura in N/C


LINEE DI FORZA

sono linee ideali che riempiono lo spazio; sono dirette punto per punto come il campo, cioè come la forza che agisce sulla carica di prova

CARICHE PUNTIFORMI

FORZA DI COULOMB

$$F = \frac{1}{4\pi\epsilon} \frac{Qq}{r^2}$$

CAMPO ELETTRICO

$$E = \frac{1}{4\pi\varepsilon} \frac{Q}{r^2}$$

SOVRAPPOSIZIONE

campi elettrici generati da più cariche presenti in una regione di spazio si sommano in ciascun punto come grandezze vettoriali

IL LAVORO DELLA FORZA ELETTRICA NON DIPENDE DAL PERCORSO SEGUITO MA SOLO DALLE POSIZIONI INIZIALE E FINALE

FISICA DELLE FORZE

ENERGIA POTENZIALE ELETTRICA

in un punto è pari al lavoro della forza elettrica necessario a portare una carica da quel punto all'infinito

$$U = Vq$$

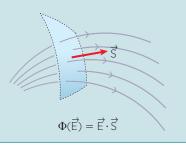
FISICA DEI CAMPI

POTENZIALE ELETTRICO V

in un punto è il rapporto fra l'energia potenziale elettrica in quel punto e la carica di prova *q*

$$V = \frac{U}{q}$$

si misura in volt 1 V = 1 J/C


CAMPO E POTENZIALE

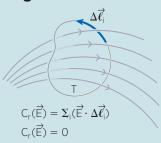
$$\boldsymbol{E} = -\frac{\Delta \boldsymbol{V}}{\Delta \boldsymbol{S}}$$

LAVORO DELLA FORZA ELETTRICA TRA A E B

$$L_{\scriptscriptstyle \Delta\to B}=-U=-q\Delta V$$

FLUSSO del campo elettrico attraverso la superficie *S*

TEOREMA DI GAUSS


il flusso del campo elettrico attraverso una superficie chiusa è direttamente proporzionale alla carica contenuta

$$\Phi_{\Sigma}(\vec{E}) = \frac{Q}{E}$$

CARICHE PUNTIFORMI

$$U(r) = \frac{1}{4\pi\varepsilon} \frac{Qq}{r} \qquad V(r) = \frac{1}{4\pi\varepsilon} \frac{Q}{r}$$

CIRCUITAZIONE del campo elettrico lungo la linea chiusa Γ

LA CIRCUITAZIONE DEL CAMPO ELETTRICO È NULLA SU QUALUNQUE PERCORSO CHIUSO

il campo elettrico è conservativo

le cariche elettriche sono le sorgenti del campo elettrico