Capitolo Le grandezze

Le dimensioni delle grandezze

L’intervallo di tempo, la lunghezza e la massa sono tre grandezze fisiche fondamentali. Invece l’area, il volume, la velocità e la densità sono esempi di grandezze derivate 

Si chiamano grandezze derivate le grandezze fisiche che sono definite a partire da quelle fondamentali.

L’unità di misura delle grandezze derivate si deduce dalle unità di misura delle grandezze fondamentali di partenza. Per esempio, per definire la velocità v usiamo le due grandezze fondamentali «distanza» s (cioè una lunghezza) e «intervallo di tempo» t:

\[{\rm{velocità}} = \frac{{{\rm{distanza\hspace{0.33em} percorsa}}}}{{{\rm{tempo \hspace{0.33em}impiegato}}}} \Rightarrow v = \frac{s}{t}.\]

Se misuriamo la distanza in metri e il tempo impiegato in secondi, non c’è bisogno di introdurre una nuova unità di misura per questa grandezza. La velocità si esprime come l’unità di misura del numeratore (m) fratto l’unità di misura del denominatore (s); così la velocità si misura in m/s (metri al secondo).

text

Nel Sistema Internazionale vi sono sette grandezze fondamentali.


Capitolo Le grandezze

Le dimensioni delle grandezze

Calcoli dimensionali

In fisica è spesso utile sapere qual è la relazione tra una certa grandezza fisica e le grandezze fondamentali attraverso cui essa è definita.

Le dimensioni fisiche di una grandezza indicano in quale modo essa è ottenuta a partire dalle grandezze fondamentali.

Il caso più semplice è quello di grandezze come la distanza s tra due punti, l’altezza h di un palo, la profondità p di un mobile: tutte queste quantità, benché differenti tra loro dal punto di vista pratico, sono esempi diversi di lunghezza. Ciò si esprime attraverso la notazione:

[s] = [h] = [p] = [l],

che, a parole, si legge: «la distanza, l’altezza e lo spessore hanno le dimensioni fisiche di una lunghezza».

La scrittura […] (tra parentesi quadre) significa «dimensioni fisiche di…» e quindi la dimensione fisica della lunghezza si indica con il simbolo [l].

Le dimensioni fisiche delle grandezze fondamentali che già conosciamo sono:

  • [t] dimensione fisica di una durata (o del tempo);
  • [l] dimensione fisica della lunghezza;
  • [m] dimensione fisica della massa.

Un numero puro (come il numero 14, oppure π) non ha dimensioni fisiche, perché non è una grandezza. Nei calcoli dimensionali, come quelli che eseguiremo tra poco, i numeri puri si trascurano.

Per trovare le dimensioni fisiche dell’area si può utilizzare una qualunque delle formule attraverso cui la calcoliamo. Per esempio, nel caso del triangolo (figura 5) abbiamo

\[A= \frac{1}{2}bh;\]

allora le dimensioni fisiche dell’area sono:

\[\left[ A \right] = \left[ {\frac{1}{2}bh} \right] = \left[ {\frac{1}{2}} \right]\left[ b \right]\left[ h \right] = \left[ b \right]\left[ h \right] = \left[ {\rm{l}} \right]\left[ {\rm{l}} \right] = \left[ {{{\rm{l}}^2}} \right].\]

L’area ha le dimensioni fisiche di una lunghezza al quadrato, visto che sia la base del triangolo che la sua altezza sono delle lunghezze.

Troviamo per esempio le dimensioni fisiche della velocità, utilizzando la formula (3):

\[\left[ v \right] = \left[ {\frac{s}{t}} \right] = \frac{{\left[ s \right]}}{{\left[ t \right]}} = \frac{{\left[ {\text{l}} \right]}}{{\left[ {\text{t}} \right]}} = \left[ {{\text{l}} \ ·{{\text{t}}^{{\text{ - }}1}}} \right].\]

La velocità ha le dimensioni fisiche di una distanza divisa per un tempo (o di una distanza per un tempo elevato alla meno uno).

Nella tabella a lato trovi le dimensioni fisiche di alcune grandezze.

Grandezza Dimensione
Area [A ] = [l2]
Volume [V ] = [l3]
Densità [d ] = [m · l-3]
Velocità [v ] = [l · t-1]
open
open

Figura 5

L’area di un triangolo è data dalla metà del prodotto della sua base b per l’altezza h.

Capitolo Le grandezze

Le dimensioni delle grandezze

Dimensioni e unità di misura

Dalle dimensioni fisiche di una grandezza derivata, si può ricavare l’unità di misura

L’unità di misura di una grandezza derivata si ottiene dalle unità di misura delle grandezze fondamentali da cui è tratta a partire dalla relazione che fornisce le dimensioni fisiche della grandezza stessa.

Per esempio, le dimensioni fisiche della velocità v sono [v] = [l]/[t]. Ciò significa che le unità di misura della velocità sono date dall’unità di misura della distanza divisa per quella dell’intervallo di tempo. 

Così, nel Sistema Internazionale (in cui la distanza si misura in metri e la durata in secondi) l’unità di misura della velocità è m/s (metro al secondo). Però, nella vita quotidiana si misura spesso la distanza in kilometri e la durata in ore: ecco quindi che un’altra unità di misura possibile per la velocità è il kilometro all’ora (km/h). 

open

vai a pag

preferenze

carattere

colori: